
Verifiable Distributed Aggregation Functions
Hannah Davis

University of California, San Diego
h3davis@eng.ucsd.edu

Christopher Patton
Cloudflare

cpatton@cloudflare.com

Mike Rosulek
Oregon State University

rosulekm@eecs.oregonstate.edu

Phillipp Schoppmann
Google

schoppmann@google.com

ABSTRACT
The modern Internet is built on systems that incentivize collection
of information about users. In order to minimize privacy loss, it is
desirable to prevent these systems from collecting more informa-
tion than is required for the application. The promise of multi-party
computation is that data can be aggregated without revealing in-
dividual measurements to the data collector. This work offers a
provable security treatment for “Verifiable Distributed Aggregation
Functions (VDAFs)”, a class of multi-party computation protocols
being considered for standardization by the IETF.

We propose a formal framework for the analysis of VDAFs and
apply it to two constructions. The first is Prio3, one of the candi-
dates for standardization. This VDAF is based on the Prio system
of Corrigan-Gibbs and Boneh (NSDI 2017). We prove that Prio3
achieves our security goals with only minor changes to the draft.
The second construction, called Doplar, is introduced by this paper.
Doplar is a round-reduced variant of the Poplar system of Boneh et
al. (IEEE S&P 2021), itself a candidate for standardization. The cost
of this improvement is a modest increase in overall bandwidth and
computation.

KEYWORDS
multi-party computation, cryptographic standards

1 INTRODUCTION
Operating a complex software system, such as an operating system,
web browser, or web service, often requires measuring the behav-
ior of the system’s users. When used for a specific purpose, such
measurements are often only consumed in some aggregated form,
e.g., 𝐹 (m1, . . . ,mct) for some specific function 𝐹 , rather than the
individual measurements m1, . . . ,mct . But in conventional systems,
the measurements are revealed to the operator as a matter of course,
resulting in an increased capability to surveil users. Consider the
following motivating examples:

(1) Identifying misbehaving or malicious origins. To detect bugs
or attack vectors, a browser vendor might want to know
how often establishing a connection to a given origin or
loading a given web page triggers a specific event [45]. But

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2023(4), 578–592
© 2023 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2023-0126

logging these events and aggregating them in the clear risks
exposing browser history.

(2) Measuring ad conversion rates. Today advertising is a sig-
nificant revenue source for many web service providers. In
order to accurately assess the value of an ad campaign, the
service provider and advertiser might want to measure how
many people who clicked on a given ad made a purchase [2].

(3) Classifying malicious client behavior. Many operators ben-
efit from the ability to classify (or predict) user behavior
automatically, and in real-time. For example, anomaly de-
tection systems use machine learning models, trained and
validated on requests from real clients, to classify fraudulent
or otherwise malicious behavior [43].

These applications require only aggregates; by collecting individual
measurements, the operator learns more information than is ulti-
mately used for the intended purpose. One way out of this predica-
ment is multi-party computation (MPC), which allows computing
some function of private inputs distributed across multiple parties,
without revealing these private inputs. In this paper, we consider
a class of MPC protocols in which the bulk of the computation is
outsourced to a small set of non-colluding servers.

Recent attention from the MPC community on problems like
these has yielded solutions that are practical enough for real-world
deployment [5, 9, 15, 16, 20, 30]. Notable examples include Mozilla’s
Origin Telemetry project [45] and the COVID-19 Exposure Noti-
fication Private Analytics system developed jointly by Apple and
Google [7]. The success of these projects spurred the formation of
a working group within the Internet Engineering Task Force (IETF)
whose objective is to standardize MPC for “Privacy-Preserving
Measurement (PPM)” [1], thereby improving interoperability and
providing a deployment roadmap for new schemes.

The primary goal of this paper is to lay some of the groundwork
for the provable security analysis that will be needed to support this
effort. We formalize a syntax and set of security definitions for a
particular class of MPC protocols from the literature [5, 15, 16, 20] of
interest to the working group. Our definitions unify previous ones
into an explicit, game-based framework that accounts for practical
matters not attended to in prior work.

We apply our definitional framework to two constructions. The
first is a candidate for standardization based on the Prio scheme
designed by Corrigan-Gibbs and Boneh [20]; we show that this
protocol meets our security goals with only minor changes. Another
candidate for standardization is the more recent Poplar scheme due
to Boneh et al. [16]; we introduce and analyze a variant of this
protocol that has improved round complexity.

578

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2023-0126

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

m

sk, stInit

n

Shard

Prep1
msgInit, 𝑥1

Prep2

msgInit, 𝑥2

Prep1

Prep2

msg1

msg2

𝑦1

𝑦2

Unshard

Agg1𝑦1,1, . . . , 𝑦1,ct

Agg2𝑦2,1, . . . , 𝑦2,ct

𝑎

ct

Figure 1: Illustration of (top) sharding and preparation of a
single measurement and (bottom) aggregation and unshard-
ing of a set of measurements. All parameters are defined in
Section 3.

Overview. The PPM working group plans to develop multiple
protocol standards, one of which is the focus of this work. The Dis-
tributed Aggregation Protocol (DAP) standard [28] centers around
the execution of a particular class of MPC protocols, called Verifi-
able Distributed Aggregation Functions (VDAFs) [8]. A VDAF is used
to securely compute some aggregation function 𝐹 over a set of
measurements generated by the clients. To protect their privacy,
the measurements are secret-shared and the computation of the
aggregate is distributed amongst multiple, non-colluding aggrega-
tion servers (called aggregators hereafter). Execution of a VDAF
involves four basic steps (illustrated in Figure 1):
• Shard: Each client shards its measurement m𝑖 into input
shares and sends one share to each aggregator. In this work,
we sometimes refer to this sequence of input shares as the
client’s report.
• Prepare: After receiving a report from a client, the aggre-

gators gossip amongst themselves in order to prepare their
shares for aggregation. This involves refining the shares
into an aggregatable form and verifying that the outputs are
“well-formed”, e.g., that they correspond to an integer in a
given range, or correspond to a one-hot vector (a vector that
is non-zero in at most one position). We call the outputs of
this process the refined shares.
• Aggregate: Once an aggregator has recovered the desired

number of refined shares, it combines them into its share
of the aggregate result, called an aggregate share. It then
sends this to the data consumer, known as the collector.
• Unshard: Finally, the collector combines each of the aggre-

gate shares into 𝐹 (m1, . . . ,mct).
Why standardize VDAFs? The case for standardizing this class of
MPC protocols is made by the aforementioned deployments of
Prio [7, 45], of which VDAFs are a natural generalization. The key
feature that makes these protocols widely applicable and suited

for Internet scale is that the expensive part of the computation
(Shard/Prepare) is fully parallelizable across all reports being ag-
gregated. This means that deployments can be scaled to such a
degree that the time spent on executing the VDAF is primarily
network-bound rather than CPU-bound. It is less clear (at least to
those in the PPM working group) whether MPC techniques where
the computations depend on all reports (e.g., oblivious sorting [50]
or shuffling [6, 9]) would scale in the same way.

This feature also implies that VDAFs are only suitable for ag-
gregation functions 𝐹 that can be decomposed into 𝑓 , 𝑔 for which
𝐹 (m1, . . . ,mct) = 𝑓 (𝑔(m1), . . . , 𝑔(mct)), where 𝑔 may be non-linear,
but 𝑓 must be affine. Indeed, the goal is not to encompass all possi-
ble MPC schemes, but a particular, useful, and highly parallelizable
class of them. VDAFs can be used for a variety of aggregation
tasks, including: simple statistics like sum, mean, standard devia-
tion, quantile estimates, or linear regression [20]; a step of a gradient
descent [35]; or heavy hitters (see below).

Security goals. The PPM working group’s primary goal for VDAFs
(cf. [28, Section 7]) is that they are private in the sense that the
attacker learns nothing about the measurements m1, . . . ,mct be-
yond what it can infer from the aggregate result 𝐹 (m1, . . . ,mct).
An active attacker who corrupts the collector and a fraction of the
aggregators (typically all but one) and controls transmission of
all messages in the protocol—except, of course, the input shares
delivered to honest aggregators. Its corruptions are “static”: the set
of corrupt parties does not change over the course of the attack.

Another security consideration for VDAFs is that they are robust
in the sense that the attacker cannot force the collector to compute
anything other than the aggregate of honestly generated reports.
Here the attacker is a set of malicious clients attempting to corrupt
the aggregate result by sending malformed reports. For robustness
we assume all of the aggregators execute the protocol correctly.
Otherwise, a corrupt aggregator could trivially corrupt the result
by sending the collector a malformed aggregate share.

We formalize these security notions in the game-playing par-
adigm [13]. First, in Section 3.2 we define privacy via an indis-
tinguishability game Exppriv

𝛱
(𝐴) played by an attacker 𝐴 against

VDAF 𝛱 . The attacker interacts with the honest parties (i.e., the
clients and uncorrupted aggregators) via a set of oracles. These
oracles allow 𝐴 to mount a kind of “chosen batch attack” in which
the honest parties process one of two batches of measurements,
and𝐴’s goal is to determine which was processed. This is analogous
to the simulation-based definition of [20, Definition 1], which asks
the the attacker to distinguish the protocol’s execution from the
view generated by a simulator.

We formalize robustness via a game Exprobust
𝛱

(𝐴) (Section 3.2).
Here the attacker 𝐴—playing the role of a coalition of malicious
clients—is given a single oracle that models the execution of the
preparation step of VDAF execution on (invalid) reports. The at-
tacker wins if an aggregator ever accepts an invalid share or if the
aggregators compute refined shares that, when combined, do not
correspond to a valid refined measurement. For natural VDAFs,
robustness implies robustness in the sense of [20, Definition 6]:
namely, the collector is guaranteed to correctly aggregate measure-
ments uploaded by honest clients.

579

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

Note on the simulation paradigm. An alternative approach, and one
that is more conventional for MPC, is to formulate security in the
Universal Composability (UC) framework [19]. This methodology
would begin by specifying the “ideal functionality” for computing
an aggregation function such that, for any VDAF that securely
realizes this functionality, any suitable notion of either privacy or
robustness would follow from the UC composition theorem.

While this methodology is attractive, it creates the following dif-
ficulty in our setting. Many applications of VDAFs may be willing to
tolerate a loose robustness bound (i.e., a non-negligible probability
of accepting an invalid share) if doing so leads to better performance
or communication. On the other hand, no application can accept
a loose bound for privacy. In order to reason about this tradeoff,
it is necessary to obtain explicit, concrete bounds for privacy and
robustness separately. A theorem in the UC framework yields only
a single bound, for the “UC-realizability” of the ideal functionality;
applying this result directly would lead to parameter choices that
might be more conservative than strictly necessary for the given
application.

Another consideration is to make our results accessible to the
target audience. Applying the UC framework, and interpreting
its results, involves a number of subtleties that, based on our own
observations, are often misunderstood when translated to practice.1
One goal of our definitions is to make as explicit as possible all of
the requirements an application like DAP [28] needs to meet in
order to use VDAFs securely.
Previous definitions. Our definitions in Section 3 can be seen as
a more precise (but not necessarily stronger) formulation of the
informal definitions given in the original Prio paper [20, Appen-
dix A]. While the authors mention the possibility of using a unified
simulation-based security definition for privacy and robustness,
they do not provide one.

For Poplar on the other hand, Boneh et al. [16, Appendix A] pro-
vide a simulation-based definition for the end-to-end functionality.
In order to capture the fact that a malicious server can influence the
output of the protocol, they define a leakage function that allows
the attacker to perturb the aggregate result with an arbitrary addi-
tive offset. While we believe this captures the robustness attacks
that are possible for Poplar, it does not immediately generalize to
the broader class of functionalities we consider as VDAFs. Also
note that Boneh et al. do not provide any proofs using their security
definition. (The proofs they do provide are for definitions that are
naturally captured by games, e.g., [16, Appendix D].) Finally, the
simulation-based security definition of Poplar only considers a sin-
gle security parameter, something that would need to be overcome
to allow for separate security bounds for privacy and robustness.

Constructions. The starting point for our work is draft-irtf-cfrg-
vdaf-03 [8], the current draft of the VDAF specification at the time
of writing.

1For a recent example, consider the standards for PAKEs (“Password-Authenticated
Key Exchange”) developed by the CFRG. Most of these standards are based on protocols
with analysis in the UC framework. For one protocol [4], one question left open by that
analysis was how to securely instantiate the “session identifier”, one of the artifacts
of the ideal functionality. The current draft offers recommendations for choosing
the session identifier, but allows applications to ignore this entirely; a game-playing
argument was used to justify this (cf [3, Appendix B]).

The first scheme described in draft-03, called Prio3, is based on
Prio [20], but incorporates performance improvements from Boneh
et al. [15] (hereafter BBCG+19). Prio3 can be used to compute a wide
variety of aggregation functions due to its use of Fully Linear Proofs
(FLPs). Briefly, an FLP is a special type of zero-knowledge proof
that allows the client’s input measurement to be validated by the
aggregators (e.g., ensure that it is a number in some pre-determined
range) who have only secret shares of the input and proof. The FLP
designed by BBCG+19 (see [15, Theorem 4.3]) and adopted by the
draft (with minor modifications; see [8, Section 7.3]) is expressed
in terms of some arithmetic circuit 𝐶 that takes in the prover’s
input 𝑥 and a random string jr computed jointly by the prover
and verifier. Computing this joint randomness, verifying the proof,
and evaluating 𝐶 (𝑥, jr) requires just one round of communication
among the aggregators.

In Section 4, we prove Prio3 is both robust (Theorem 4.2) and
private (Theorem 4.3) under the assumption that the underlying
FLP is, respectively, sound and honest-verifier zero-knowledge as
defined by BBCG+19. Our analysis unveiled a few subtle design
issues in draft-03 that we address here.

The second scheme in draft-03 is called Poplar1 and is based
on the recent Poplar protocol from Boneh et al. [16] (BBCG+21).
Poplar is designed to solve the private “heavy hitters” problem in
which each client submits an arbitrary bitstring 𝛼 and the collector
wants to compute the set of unique strings that occurred at least 𝑇
times. The key idea of BBCG+21 is an extension of distributed point
functions (DPFs) [29], where two aggregators hold a share of a “DPF
key” that concisely represents a point function. A point function
evaluates to 0 on every input, except for the distinguished point 𝛼 ,
where the function evaluates to some 𝛽 ≠ 0. By secret sharing
the DPF keys generated by the clients, the aggregators can count
how many clients submitted a particular candidate string without
revealing which clients submitted it.

Poplar1 makes use of an enriched primitive called an incremental
DPF (IDPF). IDPF keys can be queried not only at a given point,
but a given prefix. That is, an incremental point function is one that
evaluates to 0 on every input except for the set of strings that are a
prefix of 𝛼 . This new primitive gives rise to an efficient solution to
the heavy hitters problem that involves running Poplar1 multiple
times over the same set of IDPF keys, where each run begins with
a set of candidate prefixes computed from the previous run.

To achieve robustness, Poplar1 uses a two-round multi-party
computation in which the aggregators verify that the IDPF outputs
are well-formed. That means that, compared to Prio3, the Poplar1
VDAF costs one additional round of communication, per report,
during the preparation phase. The additional roundtrip is significant
from an operational perspective.

In Section 5 we introduce Doplar, our modification to Poplar
which achieves a one-round preparation. To achieve this, we com-
bine FLPs and methods from distributed point functions in a novel
way. We adopt a point-function verification method from De Cas-
tro and Polychroniadou [24]. We also introduce a new flavor of
delayed-input FLPs, which may be of independent interest.

Related Work. Several works have considered private aggregate
statistics, relying either on secret-sharing between non-colluding
servers [21, 25, 27, 37, 39, 41], or on anonymization networks [18,

580

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

33, 47]. However, these works either do not provide privacy against
malicious clients or rely on expensive zero-knowledge proofs.

A protocol for Secure Aggregation (SecAgg) in the single-server
setting was presented by Bonawitz et al. [14] and subsequently
improved by Bell et al. [10, 11]. While SecAgg can provide security
against malicious parties, it relies on multiple rounds of interaction
between clients and server.

The VDAF abstraction was designed to encompass the archi-
tecture of Prio and Poplar in which the expensive portion of the
MPC is fully parallelizable. Another example of a VDAF from the
literature is the protocol of Addanki et al. [5], which uses boolean
(bit-wise) secret sharing instead of arithmetic circuit to improve
communication cost from client to aggregator. However, this comes
at a cost of weaker privacy, since their protocol does not protect
against malicious servers.

There are also protocols that do not fit neatly into the VDAF
framework as specified, but which might be adapted into VDAFs in
the future. Masked LARK [35] is a proposal by Microsoft for training
machine learning models on private data, using secret-sharing
and MPC between a set of aggregators. AdScale [30] presents an
aggregation system focused on private ads measurement. While
designed for a single aggregation server, their construction appears
to be amenable to our multi-server setting.

Other protocols in the literature share the same security goals
of VDAFs, but do not have the same streaming architecture. One
example is the recent “Oblivious Shuffling” protocol due to Ander-
son et al. [6], which involves an MPC, assisted by a third-party,
for unlinking each report from the client that sent it. The online
processing for this procedure intrinsically involves all of the reports
being shuffled; for VDAFs, all of the online processing is per-report.
Similarly, Bell et al. [9] present a protocol for computing sparse
histograms with two aggregators that is more efficient than DPFs
for large domains, but reveals differentially private views to the
aggregators. Again, the protocol crucially relies on shuffling contri-
butions from multiple users. Vogue [36] is a protocol for computing
private heavy hitters using three non-colluding servers. The proto-
col is secure against malicious servers and clients, but again relies
on shuffling. Finally, the STAR protocol [22] uses an anonymizing
proxy to ensure the collector only learns “popular” measurements,
while any measurement that occurs less than a pre-determined
threshold is not revealed to any party.

In recent concurrent work, Mouris et al. [44] present another
three-party, honest-majority protocol for computing heavy hitters.
Their full protocol relies on a secure comparison protocol that is
run after the aggregation phase, and thus doesn’t immediately fit
our setting. However, we believe their input validation protocol can
be adapted to obtain a VDAF for heavy hitters that has similar char-
acteristics as our protocol in Section 5. (Indeed their core primitive,
which they also call “Verifiable IDPF”, bears a striking resemblence
to our own VIDPF abstraction.) Likewise, one could get robustness
against malicious aggregators in the honest-majority setting by
applying their "duplicate aggregator" technique to our protocols.
We leave exploration of how to combine our results to future work.

Full version. This is the proceedings version of our paper. The full
version [23] includes proofs of all theorems, a notion of “complete-
ness” for VDAFs, and additional remarks and commentary.

2 PRELIMINARIES
This section describes cryptographic primitives on which our con-
structions are based. We begin with a bit of non-standard notation.
Notation. Let [𝑖 .. 𝑗] denote the set of integers {𝑖, . . . , 𝑗} and write [𝑖]
as shorthand for the set [1..𝑖]. If ®𝑣 is a vector, let ®𝑣 [𝑖] denote the
𝑖-th element of ®𝑣 . Let (𝑥,) denote the singleton vector with value 𝑥
and () the empty vector.

In our pseudocode, all variables that are undeclared implicitly
have the value ⊥. Let 𝑦←$ S denote sampling 𝑦 uniformly from
a finite set S; let 𝑦←$𝐴(𝑥) denote execution of randomized al-
gorithm 𝐴; and let 𝑦 ← 𝐴(𝑥 ; 𝑟) denote execution of randomized
algorithm 𝐴 with coins 𝑟 . If 𝑋 is a random variable with support
{0, 1} we let Pr

[
𝑋
]

denote the probability that 𝑋 = 1.
A table T is a map from unique keys to values; we write T[𝐾1, . . .]

to denote the value corresponding to key 𝐾1, We sometimes
write a dot “·” in place of one of the elements of the key, e.g.,
“T[𝐾1, ·]” instead of “T[𝐾1, 𝐾2]”. We use this notation to denote the
vector of values in the table that match the key pattern. For example,
we write T[𝐾1, ·] for the vector (T[𝐾1, 𝐾1

2], . . . ,T[𝐾1, 𝐾𝑛
2]) where

(𝐾1, 𝐾1
2), . . . , (𝐾1, 𝐾𝑛

2) are all of the keys in the table prefixed by 𝐾1,
in lexicographic order.

We measure an adversary’s runtime by the time it takes to run
its experiment to completion, including evaluating its queries.
Pseudorandom Generators. The VDAF spec [8, Section 6.2] calls
for a particular type of object they call “pseudorandom generator
(PRG)”. Unlike the conventional PRGs, these objects are stateful. A
PRG is comprised of the following algorithms:
• PRG.Init(seed ∈ {0, 1}𝜅 , cntxt ∈ {0, 1}∗) → st ∈ Q takes a

seed and context string to the initial PRG state. We call 𝜅 the
seed length.
• PRG.Next(st ∈ Q, ℓ ∈ N) → (st ′ ∈ Q, out ∈ {0, 1}ℓ) takes

in the current PRG state and outputs a string of the desired
length.

We also make use of an algorithm Expand[PRG] that uses the given
PRG to map a seed and context string to a vector of integers over
the modular ring Z𝑝 for the desired modulus 𝑝 . We defer to [8,
Section 6.2] for the full definition of Expand[PRG].

In our security proofs, we model PRGs as random oracles [12].
In some cases, such as the distributed point functions (DPFs) in
Section 5.1, constructions based on computational assumptions are
known to be sufficient. We refer to Guo et al. [31, 32] for an overview
of the state-of-the-art PRGs for DPFs and similar constructions.

Fully Linear Proof Systems. We recall the definition of FLP sys-
tems from BBCG+19 [15]. (Our formulation differs slightly, as we
discuss in the full version.) FLPs allow a prover to prove to a verifier,
in zero-knowledge, that a secret-shared value has some property
required by the application, e.g., the input is a number in the de-
sired range, is a one-hot vector, etc. (The main construction of
BBCG+19 allows the validity condition to be expressed in terms
of an arithmetic circuit evaluated over the input, similar to more
conventional zero-knowledge proof systems.) They are “fully lin-
ear” in the sense that verifying the proof involves computing a
strictly linear function over both the input and proof. This allows
verification to be performed on secret-shared data, leveraging its
additive homomorphism property.

581

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

Algorithm ViewFLP (𝑥) :

1 jr←$ Fjl ; qr←$ Fql

2 𝜋 ←$ Prove(𝑥, jr)
3 𝜎 ←Query(𝑥, 𝜋, jr ; qr)
4 ret jr ∥ qr ∥ 𝜎

Algorithm ErrFLP (𝑃∗) :

5 (st𝑃∗ , 𝑥) ←$ 𝑃∗ () ; jr←$ Fjl

6 𝜋 ←$ 𝑃∗ (st𝑃∗ , jr)
7 𝜎 ←$ Query(𝑥, 𝜋, jl)
8 ret 𝑥 ∉ L ∧ Decide(𝜎)

Figure 2: Procedures for defining security of FLPs.

An FLP with finite field F, proof length𝑚, verifier length 𝑣 , prover
randomness length pl, joint randomness length jl, and query ran-
domness length ql is a triple of algorithms FLP defined as follows:
• FLP.Prove(𝑥 ∈ F𝑛, jr ∈ Fjl) → 𝜋 ∈ F𝑚 is the randomized
proof-generation algorithm that takes in an input 𝑥 and
joint randomness jr and outputs a proof string 𝜋 ∈ F𝑚 .
We shall assume this algorithm generates random coins by
sampling uniformly from Fpl .
• FLP.Query(𝑥 ∈ F𝑛, 𝜋 ∈ F𝑚, jr ∈ Fjl) → 𝜎 ∈ F𝑣 is the

randomized query-generation algorithm that takes in an
input 𝑥 , proof string 𝜋 , and joint randomness jr and outputs
a verifier string 𝜎 . We shall assume the random coins are
sampled uniformly from Fql .
• FLP.Decide(𝜎 ∈ F𝑣) → acc ∈ {0, 1} is the deterministic
decision predicate that takes in a verifier string 𝜎 and
outputs a bit acc indicating whether the input is valid.

We require the field F to have prime order; we occasionally de-
note its order by F.𝑝 . We say that FLP is fully linear if the query-
generation algorithm computes a linear function of the input and
proof. That is, there exists a function𝑄 whose output is a matrix in
F𝑣×(𝑛+𝑚) and, for all inputs 𝑥 , proofs 𝜋 , joint randomnesses jr ,
and query randomnesses qr , it holds that Query(𝑥, 𝜋, jr; qr) =

𝑄 (jr ; qr) · (𝑥 ∥ 𝜋) ∈ F𝑣 .
Associated with FLP is a language L ⊆ F𝑛 . We say that FLP is

complete for L if the proof system outputs 1 whenever the input
is in L. That is, for all 𝑥 ∈ L it holds that

Pr[Decide(𝜎) :

jr←$ Fjl ;𝜋 ←$ Prove(𝑥, jr);𝜎←$ Query(𝑥, 𝜋, jr)] = 1 .

We define soundness of FLP in terms of experiment ErrFLP (𝑃∗)
shown in Figure 2 associated with a malicious prover 𝑃∗. In this
experiment, the prover commits to an invalid input 𝑥 ∈ F𝑛 \ L.
Next, joint randomness jr is generated and given to 𝑃∗, who then
generates a proof 𝜋 . Finally, the verifier is run on 𝑥, 𝜋, jr ; the mali-
cious prover “wins” if the verifier deems the input valid. We say FLP
is 𝜖-sound for L if for all 𝑃∗ it holds that Pr

[
ErrFLP (𝑃∗)

]
≤ 𝜖 .

Let ViewFLP (𝑥) denote the procedure defined in Figure 2. We say
FLP is𝛿-statistical, strong, honest-verifier zero-knowledge—or,
simply, 𝛿-private—if the verifier’s view can be simulated without
knowledge of the input. That is, there exists a randomized algo-
rithm 𝑆 such that for all 𝑥 ∈ L it holds that∑︁

𝜔

��Pr
[
ViewFLP (𝑥) = 𝜔

]
− Pr

[
𝑆 () = 𝜔

] �� ≤ 𝛿 .
Incremental Distributed Point Functions. A point function
is a function that is 0 everywhere except on a special input 𝛼 ; an

incremental point function is a function that is 0 everywhere except
on any prefix of 𝛼 . One can imagine arranging the co-domain of
this function into a complete, binary tree in which the nodes are
labeled with prefixes; and for each node labeled 𝑝 , its children are
labeled with 𝑝 ∥ 0 and 𝑝 ∥ 1. Each node on the path to the leaf node
𝛼 is assigned a non-0 value, and all other nodes are assigned 0. (See
[16, Figure 4] for an illustration.)

An incremental point function that gives output ®𝛽 [ℓ] on the
length-ℓ prefix of 𝛼 is defined formally as:

𝑓
𝛼, ®𝛽

(
pfx ∈ {0, 1}≤𝜂

)
=

{
®𝛽
[
|pfx |

]
if pfx is a prefix of 𝛼

0 otherwise.

An Incremental Distributed Point Function (IDPF) [16] is a concise
secret sharing of an incremental point function. We recall the defini-
tion of an IDPF from Boneh et al. [16] and restrict it slightly to suit
the constructions of [8]. An IDPF’s domain is the set of bitstrings
of length at most 𝜂. For each input length ℓ , the IDPF generates
outputs in the group Gℓ . We present definitions only for the case
of 2 parties, since leading constructions are specialized for that case.
Let 𝜂, and 𝜅 be positive integers, let M be a set, and let Gℓ be a
group for each ℓ ∈ [𝜂]. An IDPF is a pair of algorithms:
• IDPF.Gen(𝛼 ∈ {0, 1}𝜂 , ®𝛽 ∈ G1 × · · · ×G𝜂) → ({0, 1}𝜅)2 ×M

is the key generation algorithm that takes a bitstring 𝛼 and
a vector ®𝛽 of point values, each of which is an element of
the group Gℓ for the corresponding input length. It outputs
a pair of key shares and a “public share” (an element of M).
• IDPF.Eval(id ∈ {1, 2}, 𝑘𝑒𝑦 ∈ {0, 1}𝜅 , pub ∈ M, pfx ∈ {0, 1}ℓ)
→ Gℓ is the point-function evaluation algorithm that
takes in a shareholder index, an IDPF key share, a public
share pub, and a prefix string of ℓ ≤ 𝜂 bits, then outputs a
share of the IDPF output.

An IDPF is correct if for all 𝛼 ∈ {0, 1}𝜂 , all ®𝛽 ∈ G1 × · · · × G𝜂 , all
(𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub) ∈ [IDPF.Gen(𝛼, ®𝛽)], and all strings pfx of length
ℓ ≤ 𝜂:

𝑓
𝛼, ®𝛽 (pfx) =

∑︁
𝑗 ∈{1,2}

IDPF.Eval(𝑗, 𝑘𝑒𝑦 𝑗 , pub, pfx) .

We define privacy for an IDPF later in Section 5.1.

3 SECURITY MODEL
3.1 Syntax
As discussed in Section 1, a VDAF can be thought of as a protocol
for evaluating an aggregation function 𝐹 that takes as input the
vector of measurements generated by the clients and outputs an
aggregate result. In addition, the function may include an auxiliary
“aggregation parameter” that allows the measurements to be “re-
fined” to contain only the information of interest to the collector.
Accordingly, prior to executing the VDAF, each aggregator’s state
is initialized with this aggregation parameter.

Recall that execution of a VDAF proceeds in four distinct phases.
(See Figure 1 for an illustration.) We formalize the computation of
the parties in each phase as the component algorithms of a VDAF:
• Shard(m ∈ I , n ∈ N) → (msgInit ∈ M, ®x ∈ X𝑠) is the

randomized sharding algorithm run by the client. It takes in
the client’s input measurement m and a nonce n and returns

582

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

an initialmessage to be broadcasted to all aggregators and a
sequence of input shares, one for each of the s aggregators.
• Prep(𝑗 ∈ [s], sk ∈ SK, st ∈ Q, n ∈ N , ®msg ∈ M∗, x ∈ X) →
(sts ∈ {running, finished, failed}, out ∈ (Q ×M) ∪ Y ∪
{⊥} is the deterministic, interactive preparation algorithm
run by each aggregator during the online preparation pro-
cess. Its inputs are the share index 𝑗 , the verification key
shared by the aggregators sk, the current state st, the nonce𝑛,
the most recent round of broadcast messages ®msg (or
(msgInit,) if this is the first round), and the aggregator’s input
share x. The preparation algorithm returns an indication sts
of whether the process is running, finished, or failed.
When the status is running, the output includes the aggre-
gator’s next state and broadcast message ((st,msg) ∈ Q×M);
and when the status is finished, the output includes the
aggregator’s refined share (y ∈ Y).
• Agg(®y ∈ Y∗) → 𝑎 ∈ A is the deterministic aggregation algo-

rithm run locally by each aggregator. It takes in a sequence
of refined shares ®𝑦 and outputs an aggregate share 𝑎.
• Unshard(ct ∈ N, ®𝑎 ∈ A𝑠) → 𝑟 ∈ O is the deterministic
unsharding algorithm used to compute the aggregate result 𝑟 .
Its inputs are the report count ct and aggregate shares ®𝑎.

The sets I , N , M , X , SK , Q, Y , A, and O must also be defined by the
VDAF. (We typically do so only implicitly.) In addition to these sets,
the VDAF specifies a set QInit ⊆ Q of possible initial states.

Our security definitions for VDAFs require three additional syn-
tactic properties. The first is a property we call refinement con-
sistency. Intuitively, this property insists that, for a given initial
state, the VDAF defines the set of refined measurements with re-
spect to which the validity of the refined shares is to be verified.
For Doplar for example (Section 5), the set of measurements are
fixed-length bitstrings, while the refined measurements are one-hot
vectors over a finite field. Formally, refinement consistency requires
the existence of functions refine and refineFromShares such that
for all m, n and stInit ∈ QInit,

Pr[refine(stInit,m) = refineFromShares(stInit,msg, ®𝑥) :
(msg, ®𝑥) ←$ Shard(m, n)] = 1 .

Second, we require aggregation consistency, which means,
roughly, that aggregating refined shares into aggregate shares, then
unsharding, is equivalent to first unsharding the individual refined
shares, then aggregating. To illustrate this idea, imagine arranging
the refined shares into a matrix, where the rows correspond to
aggregators and the columns to measurements. Aggregation consis-
tency means that one can either add up the columns, then the rows,
or add up the rows, then the columns. Formally, we require the
existence of a function finishResult such that for all refined shares
𝑦1

1, . . . , 𝑦
1
ct , . . . , 𝑦

s
1, . . . , 𝑦

s
ct ∈ Y , it holds that

Unshard(ct, (Agg(𝑦1
1, . . . , 𝑦

1
ct), . . . ,Agg(𝑦s1, . . . , 𝑦

s
ct))) =

finishResult(ct,Unshard(1, (Agg(𝑦1
1), . . . ,Agg(𝑦

s
1))),

. . . ,Unshard(1, (Agg(𝑦1
ct), . . . ,Agg(𝑦sct)))) .

We will see that these notions of refinement and aggregation con-
sistency, while fairly technical in nature, are trivial to show for
natural constructions (including Prio3 and Doplar).

Lastly, our privacy definition allows the VDAF to be executed
multiple times over the same batch of measurements, each time
beginning with a new initial state. (This accounts for the iterative
nature of IDPFs.) Depending on the VDAF, it may be necessary for
aggregators to restrict the sequence of initial states to prevent trivial
leakage. Accordingly, we require each VDAF to specify an allowed-
state algorithm validSt that takes in the sequence of previous initial
states and the next initial state and returns a bit indicating whether
the next initial state is allowed.

Remark 1. A notable feature of the VDAF syntax is the “verifica-
tion key” shared by the aggregators. Looking ahead, this key is used
to derive, from the nonce supplied by the client, shared randomness
used for verifying refined shares. This is how the authors of the VDAF
spec [8] chose to instantiate the “ideal coin-flipping functionality”
used in the descriptions of protocols in the papers on which the spec
is based [15, 16, 20]. As we will see in the next section, the details to
how this functionality is instantiated are crucial to the privacy and
robustness of VDAFs.

3.2 Security
Two definitions are given that roughly correspond2 to the notions
of robustness and privacy from [20, Appendix A]. (A notion of
completeness is given in the full version [23].)
Security considerations for DAP [28]. Recall from the introduction
that the DAP standard being developed by the PPM working group
is designed to securely execute a VDAF in a real world network.
Aspects of our security model can be thought of as abstracting away
the functionality provided by DAP. As such, many of our modeling
decisions here amount to requirements that the DAP protocol must
fulfill. We will highlight some of these considerations throughout
this section.
Robustness. We say that VDAF 𝛱 is robust if, when all of the
aggregators execute the protocol correctly, “valid” refined measure-
ments are correctly aggregated, while any “invalid” measurements
are filtered out by the aggregators (with high probability). This
property is captured via the game Exprobust

𝛱
(𝐴) defined in Figure 3.

In this game the adversary, acting as a coalition of malicious clients,
submits reports to the aggregators, eavesdrops on their communica-
tion, and observes the result of their computation. This functionality
is modeled by the Prep oracle, which the adversary may query any
number of times. It controls the nonce and initial state for each
trial, but its oracle queries are subject to the restriction that, for
each distinct nonce, the sequence of initial states must be valid
(according to the allowed-state algorithm validSt).

Validity is defined in terms of the refinement-consistency algo-
rithms (see Section 3.1). Let VstInit = {refinestInit (m) : m ∈ I } be
the set of refined measurements for initial state stInit. The adver-
sary wins the robustness game if, when run on initial state stInit,
initial message msgInit, and input shares ®x, either: (1) an aggrega-
tor accepts a share of an invalid refined measurement, i.e., one of
the aggregators ends in state finished, but the refined share 𝑦 is
not valid (i.e., not in the set VstInit , see line 15 in Figure 3); or (2)
2We have not attempted to work out formal relationships between our definitions and
those of Corrigan-Gibbs and Boneh [20]; whether our definitions, when restricted to
the same class of protocols, are stronger, weaker, or equivalent is an open question.

583

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

Game Exprobust
𝛱

(𝐴) :

1 sk←$ SK ; w ← false; 𝐴Prep () ; ret 𝑤

Prep(n ∈ N , ®x ∈ X s,msgInit ∈ M, stInit ∈ QInit) :
2 if not 𝛱.validSt(Used[n], stInit) : ret ⊥
3 Used[n] ← Used[n] ∥ (stInit,)
4 Msg[0, 1] ← msgInit
5 𝑦 ← 𝛱.refineFromShares(stInit,msgInit, ®x)
6 for 𝑗 ∈ [s]: St[𝑗] ← stInit
7 for ℓ̂ ∈ [r + 1]:
8 for 𝑗 ∈ [s]:
9 (sts, out) ← 𝛱.Prep(𝑗, sk, St[𝑗]

10 n,Msg[ℓ̂-1, ·], ®x [𝑗])
11 if sts = running:
12 (St[𝑗],msg) ← out
13 Msg[ℓ̂, 𝑗] ← msg
14 else if sts = finished:
15 𝑦 𝑗 ← out; w̃ ← [𝑦 ∉ VstInit]
16 else if sts = failed: pass
17 if not w̃:
18 w̃ ← [𝑦 ≠ 𝛱.Unshard(1, (𝛱.Agg(𝑦 𝑗)) 𝑗∈s]
19 w ← w ∨ w̃; ret (w,Msg)

Game Exppriv
𝛱,𝑡
(𝐴) :

1 (st𝐴,V , (sk 𝑗) 𝑗∈V) ←$ 𝐴()
2 if |V | + 𝑡 ≠ s return ⊥
3 b←$ {0, 1}
4 b′←$ 𝐴Shard,Setup,Prep,Agg (st𝐴)
5 ret b = b′

Shard(𝑘 ∈ N,m0,m1 ∈ I) :
6 if Used[𝑘] ≠ ⊥: ret ⊥
7 n←$ N
8 (Pub[𝑘], In[𝑘, ·]) ←$ 𝛱.Shard(mb, n)
9 Used[𝑘] ← (n,m0,m1)

10 ret (n, Pub[𝑘], (In[𝑘, 𝑗]) 𝑗∈T)

Setup(𝑖 ∈ N, 𝑗 ∈ V , stInit ∈ QInit) :
11 if Status[𝑖, 𝑗] ≠ ⊥
12 or not 𝛱.validSt(Setup[·, 𝑗], stInit) :
13 ret ⊥
14 Setup[𝑖, 𝑗] ← stInit
15 Status[𝑖, 𝑗] ← running

Prep(𝑖 ∈ N, 𝑗 ∈ V , 𝑘 ∈ N, ®msg ∈ M∗) :
16 if Status[𝑖, 𝑗] ≠ running or In[𝑘, 𝑗] = ⊥: ret ⊥
17 if St[𝑖, 𝑗, 𝑘] = ⊥:
18 St[𝑖, 𝑗, 𝑘] ← Setup[𝑖, 𝑗]; ®msg ← (Pub[𝑘],)
19 (n,m0,m1) ← Used[𝑘]
20 (sts, out) ←
21 𝛱.Prep(𝑗, sk 𝑗 , St[𝑖, 𝑗, 𝑘], n, ®msg, In[𝑘, 𝑗])
22 if sts = running:
23 (st,msg) ← out; St[𝑖, 𝑗, 𝑘] ← st
24 else if sts = finished:
25 St[𝑖, 𝑗, 𝑘] ← ⊥; Out[𝑖, 𝑗, 𝑘] ← out
26 Batch0 [𝑖, 𝑗, 𝑘] ← m0; Batch1 [𝑖, 𝑗, 𝑘] ← m1
27 else if sts = failed: St[𝑖, 𝑗, 𝑘] ← ⊥
28 ret (sts,msg)

Agg(𝑖 ∈ N, 𝑗 ∈ V) :
29 if Status[𝑖, 𝑗] ≠ running: ret ⊥
30 (st1, . . . , sts) ← Setup[𝑖, ·]
31 if 𝐹 (st 𝑗 , Batch0 [𝑖, 𝑗, ·]) ≠ 𝐹 (st 𝑗 , Batch1 [𝑖, 𝑗, ·])
32 and (∀𝑗, 𝑗 ′ ∈ V) st 𝑗 = st 𝑗′ ∧ sk 𝑗 = sk 𝑗′ :
33 ret ⊥
34 Status[𝑖, 𝑗] ← finished
35 ret 𝛱.Agg(Out[𝑖, 𝑗, ·])

Figure 3: Games for defining robustness (left) and privacy (right) of r-round, s-party VDAF 𝛱 . Let 𝐹 denote the aggregation
function computed by 𝛱 . (Refer to the full version for a formal definition.) For each stInit ∈ QInit, let VstInit = {refinestInit (m) :
m ∈ I }. Let T = [s] \ V . The “execution index” 𝑖, “share index” 𝑗 , “measurement index” 𝑘 , and “round index” ℓ̂ correspond to,
respectively, a unique initial state, an aggregator, a measurement, and a preparation round.

the refined shares computed by the aggregators do not match the
expected refined measurement, i.e., unsharding the refined shares
does not result in 𝑦 (line 18).

Definition 3.1 (Robustness). Define the advantage of 𝐴 in defeat-
ing the robustness of VDAF 𝛱 as

Advrobust
𝛱

(𝐴) = Pr
[
Exprobust

𝛱
(𝐴)

]
.

Informally, we say that𝛱 is robust if for every efficient adversary𝐴,
the value of Advrobust

𝛱
(𝐴) is small.

Remark 2. If a VDAF is robust in the sense of Definition 3.1 and
aggregation-consistent, then the VDAF is also robust in the sense of [20,
Definition 6]. Namely, as long as the aggregators execute the VDAF
correctly, the collector is guaranteed to correctly aggregate measure-
ments from honest clients (and reject the measurements from dishonest
clients). The aggregation function that is computed is determined by
the finishResult function implied by aggregation consistency, namely
𝐹 (stInit,m1, . . . ,mct) = finishResult(ct, (𝑦1, . . . , 𝑦ct)), where 𝑦𝑘 is
the refined measurement obtained from refining m

𝑘
with stInit.

Privacy. We formalize privacy via the indistinguishability game
Exppriv

𝛱,𝑡
(𝐴) in the right panel of Figure 3. The game is associated

with VDAF 𝛱 , adversary 𝐴, and corruption threshold 𝑡 . We con-
sider an attacker that controls the collector and statically corrupts
at most 𝑡 aggregators (lines 1–2). Using its Prep oracle (lines 16–28),
the adversary controls transmission of all messages in the proto-
col, except for the honestly generated input shares sent to honest

(uncorrupted) aggregators. We assume that the adversary also con-
trols setup (see the Setup oracle on lines 11–15), meaning that it
can pick the verification keys for honest aggregators (1) and the
initial state of each run of the preparation phase (14). This captures
the real-world setting of the DAP protocol [28], where one of the
aggregators (the “leader”) effectively picks these values on behalf
of the others (the “helpers”). Note that our game requires the secret
key to be committed to prior to generating measurements: this is a
deliberate restriction that was necessary to prove security of our
constructions. (It is necessary for DAP to enforce this restriction.)

The initial state for each run is subject to the restriction imposed
by the allowed-state algorithm defined by the VDAF (lines 11–13).
(Accordingly, it is necessary for honest aggregators to enforce this
restriction in the DAP protocol.)

The game asks𝐴 to distinguish execution of the protocol on two
sets of measurements of its choosing. To capture this, the attacker
is given an oracle Shard (lines 6–10) that models execution of the
honest clients. This oracle takes in two measurements m0,m1 and
shards mb, where b is the challenge bit chosen at the start of the
game, and returns the initial message and the input shares of the
corrupted aggregators. The oracle chooses a nonce n from the nonce
space N at random. (Accordingly, the DAP protocol must arrange
for clients to choose their nonces at random.)

To model an attacker that controls the collector, the game allows
the adversary to learn the aggregate shares computed by honest ag-
gregators. This is captured by the Agg oracle (lines 29–35). Queries
to this oracle are subject to the restriction that the aggregate share
does not trivially leak the challenge bit: namely, the aggregate of

584

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

both batches of measurements specified by the adversary must be
equal (31). (Tables Batch0, Batch1 keep track of the pairs of measure-
ments m0,m1 passed to the Shard for which a given aggregator has
recovered a refined share for a given initial state.) This restriction
is analogous to the “leakage function” provided to the simulator in
previous simulation-style definitions. See [20, Appendix A] and [16,
Appendix A]. We consider something slightly stronger: if the hon-
est aggregators disagree either on the initial state or the verification
key, then we do not impose the restriction (32). This amounts to
demanding that the aggregate shares leak nothing in this case.

Definition 3.2 (Privacy). Let 𝛱 be an s-party VDAF and let 𝑡 < s
be a positive integer. Define the 𝑡-advantage of 𝐴 in attacking the
privacy of 𝛱 as

Advpriv
𝛱,𝑡
(𝐴) = 2 · Pr

[
Exppriv

𝛱,𝑡
(𝐴)

]
− 1 .

Informally, we say that 𝛱 is 𝑡-private if for every efficient 𝐴 the
value of Advpriv

𝛱,𝑡
(𝐴) is small.

4 PRIO3
In this section we present our security analysis for Prio3, one of
the candidates for standardization specified in draft-irtf-cfrg-vdaf-
03 [8]. The starting point for this VDAF is an FLP system (Section 2)
that defines the set of valid measurements. Drawing on techniques
from Boneh et al. [15], Prio3 exploits the full-linearity property to
allow the aggregators to validate the secret shared input. However,
in order for the resulting VDAF to be suitable for a particular ag-
gregation function 𝐹 : I → O, we need the proof system to define
how measurements (I) are encoded as inputs to the prover and how
refined shares are processed into the aggregate results (O).

Definition 4.1 (Affine, aggregatable encodings [20, Sec. 5.]). Let
𝐹 : I → O be a function. An FLP system FLP admits an affine,
aggregatable encoding for 𝐹 if it defines the following algorithms:
• FLP.Encode(m ∈ I) → inp ∈ F𝑛 is an injective map from

the domain of 𝐹 to the input space F𝑛 of FLP.
• FLP.Truncate(inp ∈ F𝑛) → out ∈ Fol refines an FLP input

into a format suitable for aggregation. We call ol the output
length.
• FLP.Decode(ct ∈ N, out ∈ Fol) → 𝑎 ∈ O converts a refined,

aggregated output out to its final form 𝑎. This computation
may depend on the number of measurements ct.

Correctness requires that for all ct ≥ 0 and ®m ∈ I ct it holds that

𝐹 (®m) = Decode
(
ct,

∑︁
𝑖∈[ct]

Truncate (Encode (®m[𝑖]))
)
.

Let FLP be an FLP system that admits an affine, aggregatable en-
coding for 𝐹 and let PRG be a PRG. We specify the core algorithms
of Prio3[FLP, PRG] in Figure 4. (This version includes changes to
draft-irtf-cfrg-vdaf-03 [8], as we discuss in the full version.) The
sharding algorithm begins by encoding the measurement as pre-
scribed by the FLP. It then splits the encoded measurement inp into
shares, generates a proof of inp’s validity, and splits the proof into
shares as well. The joint randomness jr passed to the proof genera-
tion algorithm is derived from the input shares following the Fiat-
Shamir-style transform described—but not formally analyzed—in
[15, Section 6.2.3]. During preparation, the aggregators collectively

re-compute jr from their input shares. Each aggregator broadcasts a
share of the verifier by running the FLP query-generation algorithm
on its share of the input and proof. (The query randomness qr is
derived from the shared verification key sk and the nonce n pro-
vided by the environment.) The FLP decision algorithm is run on
the combined verifier shares.

The aggregators must derive the joint randomness prior to com-
puting their verifier shares. In order to allow them to perform both
computations in parallel in a single round, the client sends in its
initial message the sequence ®rseed of “joint randomness parts” con-
sisting of the intermediate values computed by the aggregators.
This allows jr to be computed immediately on receipt of the input
shares. To detect if a malicious client transmitted malformed parts,
the aggregators also verify the joint randomness was computed
properly in the same flow.

Allowed initial states. The set of initial states for Prio3 is simply
QInit = {𝜀}. In our security analysis, we assume honest aggrega-
tors process a batch at most once. Accordingly, the allowed-state
algorithm Prio3[FLP, PRG] .validSt accepts only if the batch was
not aggregated previously.

Consistency. The set of refined measurements includes any output
of the affine, aggregatable encoding for FLP. On input of stInit ∈ {𝜀}
and m ∈ I , the refinement algorithm Prio3[FLP, PRG] .refine first
encodes m, then truncates and decodes it as prescribed by FLP. The
refine-from-shares algorithm, Prio3[FLP, PRG] .refineFromShares,
unpacks each input share (see Unpack in Figure 4), extracts the
shares of the FLP input, truncates them, adds them together, and
decodes the result.

For aggregation consistency, we require the encoding scheme
for FLP to be aggregation-consistent in a similar sense. Specifi-
cally, there must exist a function finishResult such that for all out-
puts out1, . . . , outct ∈ Fol it holds that Decode(ct,∑

𝑘∈[ct] out𝑘) =
finishResult(ct,Decode(1, out1), . . . ,Decode(1, outct)).

Security. Fix s > 2 and let 𝛱 = Prio3[FLP, PRG] be as specified
above. Let N denote the nonce space for 𝛱 and let 𝜅 denote the
seed length of PRG.

Theorem 4.2. Modeling each RG𝑖 in Figure 4 as a random oracle,
if FLP is 𝜖-sound (Section 2), then for every adversary 𝐴 against the
robustness of 𝛱 it holds that

Advrobust
𝛱 (𝐴) ≤ (𝑞RG + 𝑞Prep) · 𝜖 +

𝑞RG + 𝑞Prep2

2𝜅−1 ,

where 𝐴 makes 𝑞Prep queries to Prep and a total of 𝑞RG queries to its
random oracles.

For reasonable choices of the PRG seed size, the loosest term in
this bound is (𝑞RG +𝑞Prep) ·𝜖 . The multiplicative loss of 𝑞RG +𝑞Prep
reflects the adversary’s ability to partially control the randomness of
the FLP insofar as it is able to use rejection sampling to obtain query
and joint randomness with any property. The 𝜖-soundness of FLP
bounds the probability of violating soundness in a single interaction,
but in a VDAF the attacker may interact with the underlying FLP
once in each of its 𝑞Prep queries to Prep, and it can use its queries
to RG1 to bias these interactions’ joint randomness.

585

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

Algorithm Shard(m, n) :
1 inp← Encode(m)
2 for 𝑗 ∈ [2..s]:
3 blind 𝑗 , xseed 𝑗 , pseed 𝑗 ←$ {0, 1}𝜅 ; ®x [𝑗] ← RG2 (xseed 𝑗 , 𝑗)
4 ®rseed [𝑗] ← RG7 (blind 𝑗 , 𝑗 ∥ n ∥ ®x [𝑗])
5 ®x [1] ← inp −∑𝑠

𝑗=2 ®x [𝑗]

6 blind1←$ {0, 1}𝜅 ; ®rseed [1] ← RG7 (blind1, 1 ∥ n ∥ ®x [1])
7 jseed ← RG6 (0𝜅 , ®rseed) ; jr ← RG1 (jseed, 𝜀)
8 ps←$ {0, 1}𝜅 ; pr ← RG4 (ps, 𝜀)
9 ®𝜋 [1] ← Prove(inp, jr ; pr) −∑𝑠

𝑗=2 RG3 (pseed 𝑗 , 𝑗)
10 ®x [1] ← (®x [1], ®𝜋 [1], blind1)
11 for 𝑗 ∈ [2..s]: ®x [𝑗] ← (xseed 𝑗 , pseed 𝑗 , blind 𝑗)
12 ret (®rseed, ®x)

Algorithm Unpack(𝑗, x) :
13 if 𝑗 = 1: (inp, 𝜋, blind) ← x
14 else:
15 (xseed, pseed, blind) ← x
16 inp← RG2 (xseed, 𝑗) ; 𝜋 ← RG3 (pseed, 𝑗)
17 ret (inp, 𝜋, blind)

Algorithm Prep(𝑗, sk, st, n, ®msg, x) :
18 if st = 𝜀: // Process initial message from client

19 (inp, 𝜋, blind) ← Unpack(𝑗, x)
20 (®rseed,) ← ®msg; ®rseed [𝑗] ← RG7 (blind, 𝑗 ∥ n ∥ inp)
21 jseed ← RG6 (0𝜅 , ®rseed) ; jr ← RG1 (jseed, 𝜀) ; qr ← RG5 (sk, n)
22 msg ← (Query(inp, 𝜋, jr ; qr), ®rseed [𝑗])
23 st ← (jseed, Truncate(inp))
24 ret (running, st,msg)
25 // Process broadcast messages from aggregators

26 (jseed, y) ← st; (®vfs [𝑗], ®rseed [𝑗]) 𝑗∈[s] ← ®msg

27 if Decide(∑𝑠

𝑗=1
®vfs [𝑗]) and jseed = RG6 (0𝜅 , ®rseed) : ret (finished, y)

28 else ret (failed,⊥)

Algorithm Agg(®y) : ret
∑|®y |

𝑖=1 ®y [𝑖]

Algorithm Unshard(ct, ®a) : ret Decode(ct,∑|®a|
𝑖=1 ®a[𝑖])

Algorithm RG𝑖 (seed, cntxt) :
29 𝑙 ← (jl, 𝑛,𝑚, pl, ql)
30 if 𝑖 ≤ 5: ret Expand[PRG] (seed, label𝑖 ∥ cntxt, F.𝑝, 𝑙 [𝑖])
31 else: ret PRG.Next(PRG.Init(seed, label𝑖 ∥ cntxt), 𝜅)

Figure 4: Definition of 1-round, s-party VDAF Prio3[FLP,PRG]. Let label1, . . . , label7 be arbitrary, distinct bitstrings.

Remark 3. Although we have not addressed this explicitly in our
specification, the extraction step of our security reduction relies on
the encoding of the context string passed to each RG𝑖 being invertible.
(Similarly for Theorem 5.4.)

Theorem 4.3. Modeling each RG𝑖 in Figure 4 as a random oracle,
if FLP is 𝛿-private, then for all 0 < 𝑡 < s and attackers𝐴 it holds that

Advpriv
𝛱,𝑡
(𝐴) ≤ 2𝑞Shard

(
𝛿 + 𝑞RG + 𝑞Shard|N | + s · 𝑞RG

2𝜅−1

)
,

where 𝐴 makes 𝑞Shard queries to Shard and a total of 𝑞RG queries to
the random oracles.

5 DOPLAR
In this section we describe and analyze Doplar, our round-reduced
variant of Poplar1 [8]. Poplar1 is a candidate for standardization in
draft-irtf-cfrg-vdaf-03; Doplar is introduced by our paper.

Poplar1 is designed to solve the “heavy hitters” problem (as
described in Section 1) using an IDPF (Section 2) in the following
way. Two aggregators hold shares of an IDPF key generated by the
clients. Each evaluates its IDPF key at a number of equal-length
candidate prefixes. They expect that the output is non-zero for at
most one of these candidates; to verify this, they execute an MPC
to determine if they hold shares of a one-hot vector, and that the
non-zero value is in the desired range (i.e., equal to one or zero). If
verification succeeds, then each adds its share of the vector together
with the other verified shares. The result is a vector representing
the number of measurements prefixed by each candidate.

The “secure sketch” MPC of Boneh et al. [16] requires two rounds
of communication between the aggregators. (Computing and ver-
ifying this sketch occurs during the preparation phase of VDAF
evaluation.) In this section we propose an alternative strategy that,
leveraging techniques in Section 4, requires just one.

Our first step is to factor the validity check into two, paralleliz-
able computations. The first computation is solely responsible for
checking that the vector of IDPF outputs is one-hot. In Section 5.1
we extend IDPFs (Section 2) into verifiable IDPFs (VIDPFs), which
preserve the same privacy properties as IDPFs, but additionally
verify the one-hotness of the refined shares. In the full version [23]
we show how to instantiate this primitive using a simple technique
from de Castro and Polychroniadou [24].

The second computation checks that the sum of the elements
of the vector is in the desired range. Our first idea is to perform
this range check using an FLP (Section 2). This does not work,
however, since a standard FLP requires the prover to know the
statement it is proving; in our case, it does not know the value of
the sum computed by the aggregators, since it does not know the
candidate prefixes. To overcome this, we show how to transform an
FLP into one that is delayed input [40]. Such a proof system allows
a proof to be generated for a set of potential inputs such that the
honest verifier accepts the proof for any input in this set, but rejects
otherwise (with high probability). We define delayed-input FLP in
Section 5.2 and defer the construction to the full version [23].

The result is the 1-round, 2-party VDAF presented in Section 5.3.
The cost of this round reduction is a modest increase in overall
communication cost and CPU time, at least for the current instanti-
ations of the VIDPF and delayed-input FLP. We compare the cost
of Doplar and Poplar1 at the end of this section.

5.1 Verifiable IDPF
A verifiable IDPF (VIDPF) allows the dealer to prove to the share-
holders that their shares represent a one-hot vector. For our pur-
poses, we define a one-hot vector as a vector that is nonzero in
at most one component (i.e., the all-zeroes vector is also one-hot).
Verifiable function secret sharings (of which VIDPF is a special

586

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

case) were previously considered in [17, 24], and a construction
specifically for VIDPF was given in [24].

A VIDPF has two algorithms in addition to the usual Gen, Eval:
• VIDPF.VEval(id ∈ {1, 2}, 𝑘𝑒𝑦 ∈ {0, 1}𝜅 , pub ∈ M,
®𝑥 ∈ ({0, 1}ℓ)𝑢) → {0, 1}∗ × (Gℓ)𝑢 takes as input an IDPF
share (private and public parts), and a sequence of IDPF
inputs. It outputs a verification value and a sequence of
output shares.
• VIDPF.Verify(h1, h2) → {0, 1} takes as input two verifica-

tion values and returns a boolean.
We also overload the syntax of the plaintext evaluation function to
take a vector of inputs, i.e., we let

𝑓
𝛼, ®𝛽 (®𝑥) =

(
𝑓
𝛼, ®𝛽 (®𝑥 [1]), 𝑓𝛼, ®𝛽 (®𝑥 [2]), . . .

)
.

We say VIDPF is correct if, for all 𝛼 ∈ {0, 1}𝜂 , all ®𝛽 ∈ G1 × · · · ×G𝜂 ,
all ®𝑥 ∈ ({0, 1}ℓ)∗, all (𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub) ∈ [Gen(𝛼, ®𝛽)], all (h1, ®𝑦1) ∈
[VEval(1, 𝑘𝑒𝑦1, pub, ®𝑥)], and all (h2, ®𝑦2) ∈ [VEval(2, 𝑘𝑒𝑦2, pub, ®𝑥)]:
• ®𝑦1 + ®𝑦2 = 𝑓

𝛼, ®𝛽 (®𝑥)
• If (®𝑦1 + ®𝑦2) is a one-hot vector then V .Verify(h1, h2) = 1

Theorem 5.4 requires VIDPF to be extractable. Intuitively, there
should be an algorithm that can extract 𝛼, ®𝛽 from adversarially
generated VIDPF key shares. Then VEval must produce shares con-
sistent with the incremental point function 𝑓

𝛼, ®𝛽 , whenever Verify
succeeds. (A similar property is formalized for IDPFs by BBCG+21.)
This property implies, among other things, that if Verify succeeds,
then shareholders are guaranteed to hold shares of a one-hot vector.
We formalize this property below.

Definition 5.1 (Extractable VIDPF (cf. [16, Definition 7])). Suppose
that VIDPF is defined in terms of a random oracle with co-domain Y .
Refer to the game in Figure 5 associated to VIDPF, extractor 𝐸, and
adversary𝐴. Define𝐴’s advantage in fooling 𝐸 as Advextract

VIDPF,𝐸 (𝐴) =
2 · Pr

[
Expextract

VIDPF,𝐸 (𝐴)
]
− 1.

Finally, our privacy reduction for Doplar (Theorem 5.5) requires
the underlying VIDPF to be private, in the sense that one share-
holder’s view—consisting of its share 𝑘𝑒𝑦 𝑗 , the public share pub,
and the other shareholder’s verification value h—leaks nothing
about the secrets 𝛼 and 𝛽 . Prior definitions of verifiable FSS—e.g.,
the one in de Castro and Polychroniadou [24]—only define privacy
with respect to a single vector of evaluation points and verification
predicate, both of which are assumed to be known at the time of
share generation. In our setting, shares are generated and only later
is there a choice of evaluation points and verification predicates.
The same shares may be evaluated many times, on different input
vectors and with different verification predicates. This leads to a
more interactive, and stronger, definition than in prior works.3

Definition 5.2. Let Exppriv
VIDPF,𝑆 (𝐴) be the privacy game for VIDPF,

simulator 𝑆 = (𝑆1, 𝑆2), and adversary𝐴 defined in Figure 5. Define
the advantage of𝐴 in distinguishing 𝑆 ’s simulation from its view of
VIDPF’s execution as Advpriv

VIDPF,𝑆 (𝐴) = 2 · Pr[Exppriv
VIDPF,𝑆 (𝐴)] − 1.

3The game does not need to provide an oracle for VIDPF.Verify since it is a determin-
istic algorithm whose inputs are known to the adversary.

Game Expextract
VIDPF,𝐸 (𝐴) :

1 b←$ {0, 1}; (𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub, st𝐴) ←$ 𝐴RO ()
2 if 𝑏 = 0: (𝛼, ®𝛽) ←$ 𝐸 (𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub, Rand)
3 b′←$ 𝐴RO,Eval (st𝐴) ; ret b = b′

Eval(®𝑥) :
4 (h1, ®𝑦1) ←$ VIDPF.VEvalRO (1, 𝑘𝑒𝑦1, pub, ®𝑥)
5 (h2, ®𝑦2) ←$ VIDPF.VEvalRO (2, 𝑘𝑒𝑦2, pub, ®𝑥)
6 if 𝑏 = 0 and VIDPF.VerifyRO (h1, h2) = 1: ret 𝑓

𝛼, ®𝛽 (®𝑥)
7 else: ret ®𝑦1 + ®𝑦2

RO(inp) :
8 if Rand[inp] = ⊥: Rand[inp] ←$ Y
9 ret Rand[inp]

Game Exppriv
VIDPF,𝑆 (𝐴) :

1 b←$ {0, 1}; (st𝐴, 𝛼, ®𝛽, 𝑗) ← 𝐴()
2 if b = 0: (𝑘𝑒𝑦 𝑗 , pub) ←$ 𝑆1 (𝑗)
3 else: (𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub) ←$ VIDPF.Gen(𝛼, ®𝛽)
4 b′ ← 𝐴Sketch (st𝐴, 𝑘𝑒𝑦 𝑗 , pub) ; ret b = b′

Sketch(®𝑥) :
5 if b = 0: h← 𝑆2 (𝑗, 𝑘𝑒𝑦 𝑗 , pub, ®𝑥)
6 else: (h, _) ← VIDPF.VEval(3 − 𝑗, 𝑘𝑒𝑦3−𝑗 , pub, ®𝑥)
7 ret h

Game Exppriv
DFLP,𝑆 (𝐴) :

1 b←$ {0, 1}; (X , 𝑠𝑡𝐴) ← 𝐴()
2 if b = 0: (𝑠𝑡𝑆 , jr, qr) ← 𝑆1 (|X |)
3 else:
4 jr←$ Fjl ; qr←$ Fql ; 𝛥←$ Fel

5 𝜋 ←$ DFLP.Prove(X , 𝛥, jr)
6 (𝑥, 𝑠𝑡𝐴) ← 𝐴(𝑠𝑡𝐴, jr, qr) ; assert 𝑥 ∈ X
7 if b = 0: 𝜎 ← 𝑆 (𝑠𝑡𝑆)
8 else: 𝜎 ← DFLP.Query(DFLP.Encode(𝛥, 𝑥), 𝛥, 𝜋, jr ; qr)
9 b′ ← 𝐴(𝑠𝑡𝐴, 𝜎) ; ret b = b′

Figure 5: Games for defining extractability and privacy for
VIDPFs and privacy of delayed-input FLP.

If this privacy game withholds the Sketch oracle from the adver-
sary (shaded in Figure 5) then we obtain the privacy game for plain
IDPFs, with the adversary’s advantage defined analogously.

In the full version [23] we describe a VIDPF construction that
satisfies all the necessary security properties. The construction is
heavily based on the verifiable DPF technique from [24].

5.2 Delayed-Input FLPs
We introduce a new variant of fully linear proofs (FLPs), in which
the prover does not know in advance which instance (i.e., input)
will be used during verification. Instead, the proof is generated
only knowing a set of possible instances; later, the proof is verified
using one of those instances. For technical reasons, the proof and
verification steps operate not on the instance, but on a randomized
encoding of the instance. This extra randomness is useful in our
eventual construction (described in the full version [23]).

587

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

We adopt the terminology of delayed-input, which is standard
in the study of (interactive) zero-knowledge protocols. In an interac-
tive protocol with delayed input, the instance and witness need not
be known/chosen until some intermediate round (often the prover’s
final round). In our setting, the actual choice of instance/witness is
not chosen until after the prover finishes “speaking”. The protocol
of Lapidot and Shamir [40] is often regarded as the first ZK protocol
with delayed input, while Katz and Ostrovsky [38] were the first
to explicitly rely on the delayed input property while using a ZK
proof in an application.

Definition 5.3. A delayed-input FLP DFLP consists of the fol-
lowing algorithms:
• DFLP.Encode(𝛥 ∈ Fel, 𝑥 ∈ F𝑛) → 𝑒 ∈ F𝑛′ takes as input

encoding randomness 𝛥, and an input instance 𝑥 . Returns an
encoding of 𝑥 ; we let 𝑛′ denote the length of the encoding.
The function Encode(𝛥, ·) must be a linear function and
invertible. We denote the inverse by Decode.
• DFLP.Prove(X ⊆ F𝑛, 𝛥 ∈ Fel, jr ∈ Fjl) → 𝜋 ∈ F𝑚 takes as

input a set of possible instances, encoding randomness 𝛥,
and joint randomness jr . Produces output proof 𝜋 .
• DFLP.Query(𝑒 ∈ F𝑛′, 𝛥 ∈ Fel, 𝜋 ∈ F𝑚, jr ∈ Fjl ; qr ∈ Fql) →
𝜎 ∈ F𝑣 takes as input an encoded instance 𝑒 , encoding ran-
domness 𝛥, proof 𝜋 , joint randomness jr , and query random-
ness qr . Returns a verifier 𝜎 . The function Query(·, ·, ·, jr ; qr)
must be linear.
• DFLP.Decide(𝜎 ∈ F𝑣) → acc ∈ {0, 1}: Takes as input query

responses 𝜎 and returns a boolean.
If Prove is restricted to sets X with |X | = 𝑘 then we call the con-
struction a delayed-𝑘-input FLP.

A delayed-input FLP should satisfy the following properties:
• Completeness (with respect to language L): For all X ⊆ L,

all 𝑥 ∈ X , and all 𝛥:
Pr[Decide(𝜎) : jr←$ Fjl ;𝜋 ←$ Prove(X , 𝛥, jr);

𝜎←$ Query(Encode(𝛥, 𝑥), 𝛥, 𝜋, jr)] = 1 .
• Soundness (with respect toL): The scheme should be sound

in the usual sense of FLPs, with respect to the language
L∗ = {(Encode(𝛥, 𝑥), 𝛥) | 𝑥 ∈ L}. In other words, it is hard
for a malicious prover to generate a proof that verifies with
respect to (𝑒, 𝛥) ∉ L∗.
• Privacy: In Figure 5 we define a game for delayed-input

FLPs, in which the proof is generated using some set X of
candidates, and later verified with respect to a particular 𝑥 ∈
X . A delayed-input FLP is 𝛿-private if there exists a simulator
𝑆 such that every𝐴’s advantage is Advpriv

DFLP,𝑆 (𝐴) ≤ 𝛿 , where

Advpriv
DFLP (𝐴) = 2 · Pr[Exppriv

DFLP,𝑆 (𝐴)] − 1 .

5.3 Construction
We specify our construction Doplar[VIDPF,DFLP, PRG] in Fig-
ure 6. Its three components are: a verifiable IDPF VIDPF with input
length 𝜂; a delayed-2-input FLP DFLP with input set {0, 1}, proof
length𝑚, encoded input length 𝑛, encoding randomness length el,
joint randomness length jl, and query randomness length ql; and a
pseudorandom generator PRG (Section 2) with seed length 𝜅. To

be suitable for our construction, we must choose VIDPF and DFLP
so that VIDPF.Gℓ = DFLP.F𝑛 for each ℓ ∈ [𝜂].

To shard its measurement 𝛼 ∈ {0, 1}𝜂 , the client begins by run-
ning the VIDPF key generator on 𝛼 . The initial state for Doplar
encodes the “level” ℓ at which the VIDPF shares are to be evaluated;
each candidate prefix must have length ℓ . (Recall from Section 2
that (V)IDPFs can be thought of as shares of values arranged in a
binary tree with nodes labeled by prefixes.) For each level of the
VIDPF tree, the client generates a delayed-input proof of the refined
shares’ validity; just as for Prio3 (Section 4), the joint randomness
used at each level is derived from the aggregator’s input shares.
The VIDPF output is programmed so that the sum of the output
shares corresponds to an encoded input for the delayed-input FLP.

To prepare a report for aggregation, the aggregators evaluate
their VIDPF key shares at the desired candidate prefixes, then inter-
act in order to check that (1) the joint randomness was computed
correctly, (2) their refined shares are one-hot, and (3) the sum of
their refined shares is either one or zero.

Allowed initial states. An initial state is valid if it consists of a
sequence of candidate prefixes all having the same length. Moreover,
each of the prefixes must be distinct. An initial state is allowed
for Doplar[VIDPF,DFLP, PRG] if the prefix length is distinct from
all previous states for the same report. That is, the allowed-state
algorithm validSt only permits a new state st = (ℓ, ®pfx) if ℓ is
distinct for all previous states and each of the prefixes ®pfx is distinct.

Remark 4. Although not addressed in Boneh et al. [16] explicitly,
this restriction on the candidate prefixes is necessary for Poplar as
well, as re-using the correlated randomness shared by the client would
reveal information about the secret-shared vector.

Consistency. The set of refined measurements for Doplar are one-
hot vectors over the field F for which the non-zero element is equal
to 0 or 1. For a given initial state (ℓ, ®pfx), this can be computed from
the VIDPF public share and key shares by evaluating the shares on
each of the prefixes ®pfx. Since the VIDPF is a point function and
the prefixes are distinct, the vector of VIDPF outputs will contain at
most one nonzero entry. Aggregation consistency for Doplar is sim-
ilarly straight-forward, since the refined share space and aggregate
share space are the same and both aggregation and unsharding are
vector summation. When we let finishResult be vector summation
as well, the desired property is trivially true.

Security. Let 𝛱 = Doplar[VIDPF,DFLP, PRG] as specified above.
Let N be the nonce space and let 𝜅 be the seed length for PRG.

Theorem 5.4. Modeling each RG𝑖 in Figure 6 as a random oracle,
if DFLP is 𝜖-sound, then for all 𝑡𝐴-time adversaries 𝐴 and 𝑡𝐸 -time
extractors 𝐸 there exists a𝑂 (𝑡𝐴 +𝑞Prep𝑡𝐸)-time adversary 𝐵 for which

Advrobust
𝛱 (𝐴) ≤ 2(𝑞RG + 𝑞Prep) · 𝜖 +

(𝑞RG + 3𝑞Prep)2

2𝜅
+ 𝑞Prep · Advextract

VIDPF,𝐸 (𝐵) ,

where 𝐴 makes 𝑞Prep queries to Prep and a total of 𝑞RG queries to its
random oracles.

588

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

Algorithm Shard(𝛼, n) :
1 // Construct the VIDPF key shares.

2 seed1, seed2←$ {0, 1}𝜅
3 for ℓ ∈ [𝜂]:
4 ®𝛥 [ℓ] ← RG2 (seed1, n ∥ ℓ ∥ 1)
5 + RG2 (seed2, n ∥ ℓ ∥ 2)
6 ®𝛽 [ℓ] ← DFLP.Encode(®𝛥 [ℓ], 1)
7 (𝑘𝑒𝑦1, 𝑘𝑒𝑦2, pub) ←$ VIDPF.Gen(𝛼, ®𝛽)
8 // Prepare the joint randomness parts.

9 ®rseed [1] ← RG5 (seed1, n ∥ 1 ∥ pub ∥ 𝑘𝑒𝑦1)
10 ®rseed [2] ← RG5 (seed2, n ∥ 2 ∥ pub ∥ 𝑘𝑒𝑦2)
11 // Generate the level proofs.

12 for ℓ ∈ [𝜂]:
13 jseed ← RG6 (0𝜅 , ℓ ∥ ®rseed)
14 jr ← RG1 (jseed, n ∥ ℓ)
15 𝜋 ←$ DFLP.Prove({0, 1}, ®𝛥 [ℓ], jr)
16 ®pf [ℓ] ← 𝜋 − RG3 (seed2, n ∥ ℓ)
17 // Prepare the initial message and input shares.

18 x1 ← (𝑘𝑒𝑦1, seed1, ®pf)
19 x2 ← (𝑘𝑒𝑦2, seed2)
20 msg ← (pub, ®rseed)
21 ret (msg, x1, x2)

Algorithm Unpack(𝑗, x, n, ℓ) :

22 if 𝑗 = 1: (𝑘𝑒𝑦, seed, ®pf) ← x; 𝜋 ← ®pf [ℓ]
23 else: (𝑘𝑒𝑦, seed) ← x; 𝜋 ← RG3 (seed, n ∥ ℓ)
24 ret (𝑘𝑒𝑦, seed, 𝜋)

Algorithm Prep(𝑗, sk, st, n,msg, x) :
25 if st ∈ QInit: // Process initial message from client

26 (ℓ, ®pfx) ← st; 𝑢 ← | ®pfx |
27 (pub, ®rseed) ← msg; (𝑘𝑒𝑦, seed, 𝜋) ← Unpack(𝑗, x, n, ℓ)
28 𝛥 ← RG2 (seed, n ∥ ℓ ∥ 𝑗)
29 ®rseed [𝑗] ← RG5 (seed,n ∥ ℓ ∥ 𝑗 ∥ pub ∥ 𝑘𝑒𝑦)
30 jseed ← RG6 (0𝜅 , ®rseed)
31 jr ← RG1 (jseed, n ∥ ℓ) ; qr ← RG4 (sk, n ∥ ℓ)
32 (h, ®𝑦) ← VIDPF.VEval(𝑗, pub, 𝑘𝑒𝑦, ®pfx)
33 inp← ∑

𝑖∈[𝑢] ®𝑦 [𝑖]
34 𝜎 ← DFLP.Query(inp, 𝛥, 𝜋, jr ; qr)
35 msg ← (𝜎, ®rseed [𝑗], h) ; st ← (jseed, (DFLP.Decode(®𝑦 [𝑖]))𝑖∈[𝑢])
36 ret (running, st,msg)
37 // Process broadcast messages from aggregators

38 (jseed, ®𝑦) ← st;
(
(𝜎1, rseed1, h1), (𝜎2, rseed2, h2)

)
← msg

39 acc ← DFLP.Decide(𝜎1 + 𝜎2)
40 if acc and jseed = RG6 (0𝜅 , (rseed1, rseed2))
41 and VIDPF.Verify(h1, h2) : ret (finished, ®𝑦)
42 else: ret (failed,⊥)

Algorithm Agg(®y) : ret
∑|®y |

𝑖=1 ®y [𝑖]

Algorithm Unshard(_ , ®a) : ret
∑|®a|

𝑖=1 ®a[𝑖]

Algorithm RG𝑖 (seed, cntxt) :
43 𝑙 ← (jl, el,𝑚, ql)
44 if 𝑖 ≤ 4: ret Expand[PRG] (seed, label𝑖 ∥ cntxt, F.𝑝, 𝑙 [𝑖])
45 else: ret PRG.Next(PRG.Init(seed, label𝑖 ∥ cntxt), 𝜅)

Figure 6: Definition of 1-round, 2-party VDAFDoplar[VIDPF,DFLP,PRG]. Let label1, . . . , label6 be arbitrary, distinct bitstrings.

Theorem 5.5. For all 𝑡𝐴-time adversaries𝐴 and 𝑡 ′-time simulators
𝑆,𝑇 there exist 𝑂 (𝑡𝐴 + 𝑞Shard𝑡 ′)-time adversaries 𝐵,𝐶 for which

Advpriv
𝛱,1 (𝐴) ≤ 2𝑞Shard

(
Advpriv

VIDPF,𝑆 (𝐵) + 𝜂 · Adv
priv
DFLP,𝑇 (𝐶)

+ 𝜂𝑞RG + 𝑞Shard|N | + 3𝑞RG
2𝜅−1

)
,

where eachRG𝑖 in Figure 6 is modeled as a random oracle, adversary𝐴
makes a total of 𝑞RG queries to all of its random oracles and 𝑞Shard
queries to Shard.

5.4 Performance Evaluation
In this section we compare the cost of Doplar to Poplar1 in terms
of communication (total bits written to the wire) and computation.
The parameters chosen for Poplar1 by the specification [8] match
those in the performance evaluation conducted by Boneh et al. [15].
We therefore take these parameters as our basis for comparison. In
the following, we have instantiated VIDPF and DFLP as described
in the full version.

Boneh et al. [15] claim a per-report robustness bound of roughly
2/|F|, where F is the field chosen for the inner nodes.4 They choose
a 62-bit field. In order to obtain the same robustness bound, while
permitting the adversary at most 264 queries to its random oracles,
we need to use a 128-bit field for Doplar. For both constructions, we

4Poplar1 uses a smaller field for the inner nodes of the IDPF tree than the leaf nodes.

instantiate the PRG with AES-128 as described in [8, Section 6.2]
(hence the seed length is 𝜅 = 128).

Communication overhead. In Figure 7 we plot the communica-
tion cost of Doplar and Poplar1 for various choices of the input
length 𝜂. We plot the total number of kilobytes sent by each client.
We also plot the total number of kilobytes sent by each aggregator,
per report, over all 𝜂 rounds of aggregation. As one would expect,
the communication cost for Doplar scales linearly with the input
length. However, the client’s bandwidth is about 6 times that of
Poplar1; and the Aggregator’s bandwidth is about 5 times.

Computational overhead. To evaluate Doplar’s computational
overhead, we implement a prototype5 and benchmark it against an
existing implementation of Poplar1. The ISRG (Internet Security
Research Group) maintains Rust implementations of the current
crop of VDAF standard candidates.6 The code includes a work-in-
progress version of Poplar1 (on a development branch, as of this
writing) as well as the FLP and IDPF primitives we use in our own
implementation of Doplar.

We use the Criterion framework for Rust.7 All benchmarks re-
ported below were run on a 2019 MacBook Pro (2.6 GHz 6-Core Intel
Core i7) running rustc version 1.67.1 and cargo-criterion version

5https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact
6Source code for the prio crate: https://github.com/divviup/libprio-rs
7Criterion: https://docs.rs/criterion/latest/criterion/

589

https://github.com/cloudflareresearch/doplar/tree/cjpatton/PoPETS-2023.4-Artifact
https://github.com/divviup/libprio-rs
https://docs.rs/criterion/latest/criterion/

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

0

50

100

150

200

Ba
nd

w
id

th
(K

ilo
by

te
s) Doplar Client

Doplar Aggregator
Poplar1 Client
Poplar1 Aggregator

100 200 300 400 500
0

5

10

15

Input Length (Bits)

Ru
nt

im
e

(m
ill

ise
co

nd
s) Doplar Client

Doplar Aggregator
Poplar1 Client
Poplar1 Aggregator

Figure 7: Bandwidth (top) and runtime (bottom) for Doplar
and Poplar1.

1.1.0. The default parameters were used, except the measurement
time was set to 30 seconds for all benchmarks.
Microbenchmarks for sharding. To benchmark the client, we chose
a random input string of the desired length, then measured the
runtime of the sharding algorithm on that input. Figure 7 shows
the runtimes for lengths ranging from 32 to 512 bits. From these
data we see that sharding is about 6 times as expensive for Doplar
as for Poplar1. However, sharding a 512-bit input takes only 5
milliseconds, which is still quite practical. (Moreover, there is more
room for optimization of our prototype.)
Microbenchmarks for preparation. Due to the highly parallelizable
nature of VDAFs, much of the time the aggregators spend on ex-
ecuting the protocol is network-bound. However, it is useful to
assess the amount of CPU time spent on processing a single report.
To do so, we report microbenchmarks for per-report preparation,
specifically how much time it takes an aggregator to compute its
(first) broadcast message from the initial state provided by the col-
lector and the input share provided by the client. Let us call this
“preparation initialization”.

One complicating factor is that the runtime of IDPF evaluation
depends intrinsically on the distribution of the batch of measure-
ments and the heavy-hitters threshold used. (We refer the reader
to Algorithm 3 in Boneh et al. [16] for details.) To address this, we
generated a synthetic batch of measurements and computed the
prefix tree (cf. [16, Section 5.1]) for the desired threshold, then ran
preparation initialization on the longest paths of this tree.

The following experiment was run 10 times. Following Boneh
et al. [16], we sample random input strings from a Zipf distribution
(with parameter 1.03 and support 128), then compute the prefix tree
with a heavy-hitters threshold of 10. We chose a batch size of 1000.
For both Doplar and Poplar, run Criterion to measure the runtime
of preparation for the longest paths of the tree.

Figure 7 shows the runtime averaged over all trials for lengths
ranging from 32 to 512 bits. From these data we see that preparation
is only about 1.75 times as expensive for Doplar as for Poplar1. This
is not surprising, given that the runtime is dominated by IDPF
evaluation, which in turn depends on the number of candidates.

6 CONCLUSION AND FUTUREWORK
The PPM working group’s ambition is to preserve user privacy
even as software systems rely increasingly on gaining insights into
user behavior. Our work aims to help ensure that this effort rests
on firm formal foundations. However, we leave open a number of
directions for future work. We discuss two in the remainder.

Security analysis of DAP. The definitions in this paper apply to
VDAFs, which are only a component of the DAP specification [28].
Thus, our work necessarily leaves open the security of the end-
to-end protocol. There are two important questions. First, DAP is
designed to inherit the security properties of VDAF, i.e., one would
hope that whatever can be proven about the VDAF also holds when
the VDAF is instantiated in the real-world environment in which
DAP runs. One way to address this is to formulate the problem in
terms of indifferentiability [46]: if DAP’s execution can be shown to
be indifferentiable from the execution of the VDAF in the idealized
environment described here, then any attack against DAP can be
translated into an attack against the underlying VDAF.

The other important question is whether DAP meets its own se-
curity goals, which, depending on the application, might go beyond
what can be achieved with a VDAF alone. Consider that whether
MPC-style definitions like ours are enough for privacy depends
intrinsically on the nature of the measurements being collected and
how they are aggregated. It is one thing to ensure that we securely
compute the aggregate; it is another to ensure that the aggregate it-
self does not leak “too much” information about the measurements.
In particular, in many applications it will be useful to achieve differ-
ential privacy (DP) [26] in addition to secure computation. There
are definitions of DP that extend to the multi-party setting [42, 49],
and a number of works have considered MPC protocols for aggre-
gation functionalities that also guarantee differential privacy of
the outputs [9, 34, 48]. We hope to see future work extend this
investigation to specific VDAFs.

Doplar improvements. For some applications, it would be useful
for Doplar (or Poplar1) if the leaf output could be “weighted”, i.e.,
a number in range {𝑎, . . . , 𝑏} rather than {0, 1}. (Consider the ad-
conversion use case from Section 1: it might be useful to know
not only how many purchases were made per ad impression, but
the total amount of money that was spent.) The delayed-𝑘-input
FLP paradigm may allow for this generalization, if schemes can
be constructed for 𝑘 > 2. (In this work, we only construct the
delayed-2-input FLP needed for plain heavy hitters.)

There is also room for improvement of the communication cost.
Despite the round reduction, the higher bandwidth may be pro-
hibitive for some applications. However, we are optimistic that
the bandwidth can be improved. Future work should focus on the
delayed-2-input FLP. The current instantiation (in the full verison),
while simple, effectively doubles the proof size of the base FLP.

590

Verifiable Distributed Aggregation Functions Proceedings on Privacy Enhancing Technologies 2023(4)

ACKNOWLEDGMENTS
Thank you to the anonymous reviewers from the PETS 2023 pro-
gram committee whose feedback helped us improve a number of
technical aspects of our paper. Thank you as well to Christopher
Wood who helped us position this work in the context of the ongo-
ing standardization effort at IETF. Finally, thanks to Nikita Borisov,
Sofía Celi, Tanya Verma, Tara Whalen, and Avani Wildani for edi-
torial improvements.

Hannah and Mike carried out their work on this paper while
visiting Cloudflare Research. This research received no specific
grant from any funding agency in the public, commercial, or not-
for-profit sectors.

REFERENCES
[1] 2022. Privacy Preserving Measurement. https://datatracker.ietf.org/wg/ppm/

about/
[2] 2022. Private Advertising Tecnology Community Group. https://www.w3.org/

community/patcg/
[3] Michel Abdalla, Björn Haase, and Julia Hesse. 2021. Security Analysis of CPace.

Cryptology ePrint Archive, Paper 2021/114. https://eprint.iacr.org/2021/114
[4] Michel Abdalla, Björn Haase, and Julia Hesse. 2022. CPace, a balanced composable

PAKE. Internet-Draft draft-irtf-cfrg-cpace-06. Internet Engineering Task Force.
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/06/ Work in Progress.

[5] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-
niadou. 2021. Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares.
Cryptology ePrint Archive, Report 2021/576. https://ia.cr/2021/576.

[6] Erik Anderson, Melissa Chase, F. Betul Durak, Esha Ghosh, Kim Laine, and
Chenkai Weng. 2021. Aggregate Measurement via Oblivious Shuffling. Cryptol-
ogy ePrint Archive, Report 2021/1490. https://ia.cr/2021/1490.

[7] Apple and Google. 2021. Exposure Notification Privacy-preserving Analytics
(ENPA). White paper. https://covid19-static.cdn-apple.com/applications/covid19/
current/static/contact-tracing/pdf/ENPA_White_Paper.pdf.

[8] Richard Barnes, Christopher Patton, and Phillipp Schoppmann. 2022. Verifiable
Distributed Aggregation Functions. Internet-Draft draft-irtf-cfrg-vdaf-03. Internet
Engineering Task Force. https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/03/
Work in Progress.

[9] James Bell, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana
Raykova, and Phillipp Schoppmann. 2022. Distributed, Private, Sparse Histograms
in the Two-Server Model. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security. 307–321.

[10] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana
Raykova, and Cathie Yun. 2022. ACORN: Input Validation for Secure Aggregation.
Cryptology ePrint Archive (2022). https://eprint.iacr.org/2022/1461

[11] James Henry Bell, Kallista A Bonawitz, Adrià Gascón, Tancrède Lepoint, and
Mariana Raykova. 2020. Secure single-server aggregation with (poly) logarithmic
overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security. 1253–1269.

[12] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles Are Practical: A Para-
digm for Designing Efficient Protocols. In Proceedings of the 1st ACM Conference
on Computer and Communications Security (Fairfax, Virginia, USA) (CCS ’93).
ACM, New York, NY, USA, 62–73.

[13] Mihir Bellare and Phillip Rogaway. 2006. The Security of Triple Encryption and
a Framework for Code-Based Game-Playing Proofs. In Advances in Cryptology
- EUROCRYPT 2006, Serge Vaudenay (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 409–426.

[14] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security.
1175–1191.

[15] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs.
In Advances in Cryptology – CRYPTO 2019, Alexandra Boldyreva and Daniele
Micciancio (Eds.). Springer International Publishing, Cham, 67–97.

[16] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
2021. Lightweight Techniques for Private Heavy Hitters. In IEEE Symposium on
Security and Privacy. IEEE, 762–776.

[17] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function secret sharing: Improve-
ments and extensions. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. 1292–1303.

[18] Justin Brickell and Vitaly Shmatikov. 2006. Efficient anonymity-preserving data
collection. In Proceedings of the 12th ACM SIGKDD international conference on

Knowledge discovery and data mining. 76–85.
[19] Ran Canetti. 2020. Universally Composable Security. J. ACM 67, 5, Article 28

(sep 2020), 94 pages. https://doi.org/10.1145/3402457
[20] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). USENIX Association, Boston,
MA, 259–282. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/corrigan-gibbs

[21] George Danezis, Cédric Fournet, Markulf Kohlweiss, and Santiago Zanella-
Béguelin. 2013. Smart meter aggregation via secret-sharing. In Proceedings of the
first ACM workshop on Smart energy grid security. 75–80.

[22] Alex Davidson, Peter Snyder, EB Quirk, Joseph Genereux, Benjamin Livshits, and
Hamed Haddadi. 2022. STAR: Secret Sharing for Private Threshold Aggregation
Reporting. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 697–710.

[23] Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann.
2023. Verifiable Distributed Aggregation Functions. Cryptology ePrint Archive,
Paper 2023/130. https://eprint.iacr.org/2023/130

[24] Leo de Castro and Antigoni Polychroniadou. 2022. Lightweight, Maliciously Se-
cure Verifiable Function Secret Sharing. In Advances in Cryptology - EUROCRYPT
2022 - 41st Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Trondheim, Norway, May 30 - June 3, 2022, Proceedings, Part I
(Lecture Notes in Computer Science, Vol. 13275), Orr Dunkelman and Stefan Dziem-
bowski (Eds.). Springer, 150–179. https://doi.org/10.1007/978-3-031-06944-4_6

[25] Yitao Duan, John Canny, and Justin Zhan. 2010. {P4P}: Practical {Large-
Scale}{Privacy-Preserving} Distributed Computation Robust against Malicious
Users. In 19th USENIX Security Symposium (USENIX Security 10).

[26] Cynthia Dwork. 2006. Differential Privacy. In Automata, Languages and Pro-
gramming, Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–12.

[27] Tariq Elahi, George Danezis, and Ian Goldberg. 2014. Privex: Private collection
of traffic statistics for anonymous communication networks. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
1068–1079.

[28] Tim Geoghegan, Christopher Patton, Eric Rescorla, and Christopher A. Wood.
2022. Distributed Aggregation Protocol for Privacy Preserving Measurement.
Internet-Draft draft-ietf-ppm-dap-02. Internet Engineering Task Force. https:
//datatracker.ietf.org/doc/draft-ietf-ppm-dap/02/ Work in Progress.

[29] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Appli-
cations. In Advances in Cryptology – EUROCRYPT 2014, Phong Q. Nguyen and
Elisabeth Oswald (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 640–658.

[30] Matthew Green, Watson Ladd, and Ian Miers. 2016. A Protocol for Privately
Reporting Ad Impressions at Scale. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (Vienna, Austria). As-
sociation for Computing Machinery, New York, NY, USA, 1591–1601. https:
//doi.org/10.1145/2976749.2978407

[31] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. 2020. Efficient and secure
multiparty computation from fixed-key block ciphers. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 825–841.

[32] Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and
Zheli Liu. 2022. Half-Tree: Halving the Cost of Tree Expansion in COT and DPF.
Cryptology ePrint Archive, Paper 2022/1431. https://eprint.iacr.org/2022/1431

[33] Susan Hohenberger, Steven Myers, Rafael Pass, et al. 2014. ANONIZE: A large-
scale anonymous survey system. In 2014 IEEE Symposium on Security and Privacy.
IEEE, 375–389.

[34] Thomas Humphries, Rasoul Akhavan Mahdavi, Shannon Veitch, and Florian
Kerschbaum. 2022. Selective MPC: Distributed Computation of Differentially
Private Key-Value Statistics. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. 1459–1472.

[35] Joseph J. Pfeiffer III, Denis Charles, Davis Gilton, Young Hun Jung, Mehul Parsana,
and Erik Anderson. 2021. Masked LARk: Masked Learning, Aggregation and
Reporting worKflow. arXiv:2110.14794 [cs.CR]

[36] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal,
and Somya Sangal. 2022. Vogue: Faster Computation of Private Heavy Hitters.
Cryptology ePrint Archive, Paper 2022/1561. https://eprint.iacr.org/2022/1561

[37] Marek Jawurek and Florian Kerschbaum. 2012. Fault-tolerant privacy-preserving
statistics. In International Symposium on Privacy Enhancing Technologies Sympo-
sium. Springer, 221–238.

[38] Jonathan Katz and Rafail Ostrovsky. 2004. Round-optimal secure two-party
computation. In Annual International Cryptology Conference. Springer, 335–354.

[39] Klaus Kursawe, George Danezis, and Markulf Kohlweiss. 2011. Privacy-friendly
aggregation for the smart-grid. In International Symposium on Privacy Enhancing
Technologies Symposium. Springer, 175–191.

[40] Dror Lapidot and Adi Shamir. 1990. Publicly Verifiable Non-Interactive Zero-
Knowledge Proofs. In Advances in Cryptology - CRYPTO ’90, 10th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 11-15, 1990,
Proceedings (Lecture Notes in Computer Science, Vol. 537), Alfred Menezes and
Scott A. Vanstone (Eds.). Springer, 353–365. https://doi.org/10.1007/3-540-38424-

591

https://datatracker.ietf.org/wg/ppm/about/
https://datatracker.ietf.org/wg/ppm/about/
https://www.w3.org/community/patcg/
https://www.w3.org/community/patcg/
https://eprint.iacr.org/2021/114
https://datatracker.ietf.org/doc/draft-irtf-cfrg-cpace/06/
https://ia.cr/2021/576
https://ia.cr/2021/1490
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/03/
https://eprint.iacr.org/2022/1461
https://doi.org/10.1145/3402457
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs
https://eprint.iacr.org/2023/130
https://doi.org/10.1007/978-3-031-06944-4_6
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/02/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/02/
https://doi.org/10.1145/2976749.2978407
https://doi.org/10.1145/2976749.2978407
https://eprint.iacr.org/2022/1431
https://arxiv.org/abs/2110.14794
https://eprint.iacr.org/2022/1561
https://doi.org/10.1007/3-540-38424-3_26
https://doi.org/10.1007/3-540-38424-3_26

Proceedings on Privacy Enhancing Technologies 2023(4) Davis et al.

3_26
[41] Luca Melis, George Danezis, and Emiliano De Cristofaro. 2015. Efficient private

statistics with succinct sketches. arXiv preprint arXiv:1508.06110 (2015).
[42] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. 2009. Com-

putational differential privacy. In Annual International Cryptology Conference.
Springer, 126–142.

[43] Daniele Molteni. 2022. Improving the WAF with Machine Learning. Cloudflare
blog. https://blog.cloudflare.com/waf-ml/

[44] Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos. 2023. PLASMA:
Private, Lightweight Aggregated Statistics against Malicious Adversaries with
Full Security. Cryptology ePrint Archive, Paper 2023/080. https://eprint.iacr.org/
2023/080 https://eprint.iacr.org/2023/080.

[45] Mozilla. 2022. Origin Telemetry. https://firefox-source-docs.mozilla.org/toolkit/
components/telemetry/collection/origin.html

[46] Christopher Patton and Thomas Shrimpton. 2020. Quantifying the Security
Cost of Migrating Protocols to Practice. In Advances in Cryptology – CRYPTO
2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International

Publishing, Cham, 94–124.
[47] Raluca Ada Popa, Andrew J Blumberg, Hari Balakrishnan, and Frank H Li. 2011.

Privacy and accountability for location-based aggregate statistics. In Proceedings
of the 18th ACM conference on Computer and communications security. 653–666.

[48] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Haeberlen. 2019.
Honeycrisp: Large-Scale Differentially Private Aggregation without a Trusted
Core. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing Machinery,
New York, NY, USA, 196–210. https://doi.org/10.1145/3341301.3359660

[49] Phillipp Schoppmann, Lennart Vogelsang, Adrià Gascón, and Borja Balle. 2020.
Secure and Scalable Document Similarity on Distributed Databases: Differential
Privacy to the Rescue. Proceedings on Privacy Enhancing Technologies 2 (2020),
209–229.

[50] Erik Taubeneck, Martin Thomson, Benjamin Savage, Benjamin Case, Daniel
Masny, and Richa Jain. 2022. IPA End to End Protocol. Proposal submitted to
the PATCG working group of the W3. https://github.com/patcg-individual-
drafts/ipa/blob/main/IPA-End-to-End.md

592

https://doi.org/10.1007/3-540-38424-3_26
https://blog.cloudflare.com/waf-ml/
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://firefox-source-docs.mozilla.org/toolkit/components/telemetry/collection/origin.html
https://doi.org/10.1145/3341301.3359660
https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md
https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md

	Abstract
	1 Introduction
	2 Preliminaries
	3 Security Model
	3.1 Syntax
	3.2 Security

	4 Prio3
	5 Doplar
	5.1 Verifiable IDPF
	5.2 Delayed-Input FLPs
	5.3 Construction
	5.4 Performance Evaluation

	6 Conclusion and Future Work
	Acknowledgments
	References

